INSTRUCTION SET
~ ARCHITECTURE

Classes of ISA
Two popular versions
@ Register-Memory ISA

eg:830x36
@ Load-store ISA
eg:MIPS

Memory Addressing
Use byte addressing to access memory operands

Addressing Modes
specifies the address of an operand/memory object

Types and sizes of operands

@ MIPS and 80x86 support operand sizes of 8
bit,16bit,32bit,64 bit

@ 80x86 supports 8o bit floating point(extended double
precision)

Operations

MIPS is a simple and easy-to-pipeline ISA, 80x86
has a much larger and richer set of operations.

Encoding ISA

@ Fixed length
Eg:MIPS (32 bit)

@ Variable length
Eg:80x86(1 to 18 bytes)

Classifying ISA

There are mainly four classes of instruction set
@ Stack

operands are implicitly on the top of the stack- operations are
carried out there.

© Accumulator

one operand is implicitly in the accumulator- other operand is
specified along with the instruction.

@ Register-Memory

only explicit operands- one operand is in register and the other
one in memory.

@ Register-Register
load-store architecture, only load and store instructions have
memory operands.

(c) Register-memony (d} Register-registerfioad-store

Figure B.1 Operand locations for four instruction set architecture classes. The arrows indicate whether the oper-
and is an input or the result of the ALU operation, or both an input and result. Lighter shades indicate inputs, and the
dark shade indicates the result. In (a), a Top Of Stack register (TOS), points to the top input operand, which is com-
bined with the operand below. The first operand is removed from the stack, the result takes the place of the second
operand, and TOS is updated to point to the result. All operands are implicit. In (b), the Accumulator is both an
implicit input operand and a result. In (c), one input operand is a register, one is in memory, and the result goes to a
register. All operands are registers in (d) and, like the stack architecture, can be transferred to memory only via sepa-
rate instructions: push or pop for (a) and load or store for (d).

Stack

Accumulator

Register
(register-memory)

Register (load-store)

Push A

Load A

Load R1,A

Load R1,A

Push B

Add B

Add R3,RL,B

Load R2,B

Add

Store C

Store R3,C

Add R3,R1,RZ2

Pop C

Store R3,C

Figure B.2 The code sequence for C = A + B for four classes of instruction sets. Mote
that the Add instruction has implicit operands for stack and accumulator architectures,
and explicit operands for register architectures. It is assumed that A, B, and C all belong
in memory and that the values of A and B cannot be destroyed. Figure B.1 shows the
Add operation for each class of architecture.

R g T i A T S R

~ -

A LI A
e T e

Number of Maximum number

memory of operands
addresses allowed Type of architecture Examples
0 3 Load-store Alpha, ARM, MIPS, PowerPC, SPARC, SuperH,
T™M32
1 2 Register-memory IBM 360/370, Intel 80x86, Motorola 628000,

TITMS320C54x

Memory-memory

VAX (also has three-operand formats)

Memory-memory

VAX (also has two-operand formats)

Figure B.3 Typical combinations of memory operands and total operands per typical ALU instruction with
examples of computers. Computers with no memory reference per ALU instruction are called load-store or register-
register computers. Instructions with multiple memory operands per typical ALU instruction are called register-
memory or memory-memory, according to whether they have one or more than one memory operand.

Type Advantages Disadvantages

Register-register Simple, fixed-length instruction encoding. Higher instruction count than architectures with
(0, 3) Simple code generation model. Instructions memory references in instructions. More instructions
take similar numbers of clocks to execute and lower instruction density leads to larger
(see App. A). programs.
Register-memory Data can be accessed without a separate load Operands are not equivalent since a source operand in
(1, 2) instruction first. Instruction format tends tobe a binary operation is destroyed. Encoding a register
easy to encode and yields good density. number and a memory address in each instruction
may restrict the number of registers. Clocks per
instruction vary by operand location.

Memory-memory Most compact. Doesn't waste registers for Large variation in instruction size, especially for

(2. 20r(3,.3) temporaries. three-operand instructions. In addition, large
variation in work per instruction. Memory accesses
create memory bottleneck. (Not used today.)

Figure B.4 Advantages and disadvantages of the three most common types of general-purpose register com-
puters. The notation {(m, n) means m memory operands and n total operands. In general, computers with fewer alter-
natives simplify the compilers task since there are fewer decisions for the compiler to make (see Section B.8).
Computers with a wide variety of flexible instruction formats reduce the number of bits required to encode the pro-
gram.The number of registers also affects the instruction size since you need log, (number of registers) for each reg-
ister specifier in an instruction. Thus, doubling the number of registers takes 3 extra bits for a register-register
architecture, or about 10% of a 32-bit instruction.

Memory Addressing

The architecture must define how memory addresses
are interpreted and how they are specified.

Memory consists of storage cells, each of which can store
one bit of information(o or 1)

Memory is organized so that a group of n bits can be
stored or retrieved in a single basic operation.

@ Each group of n bits is referred to as a word of
information, and n is called word length.

@ Modern computers have word length ranges from 16 to
64 bits.

@ Accessing the memory to store or retrieve a single item
of information , requires distinct addresses for each
item location.

It is customary to use numbers through

o to 2k-1 for some suitable values of k.

2¥ addresses constitute the address space of the
computer.

Byte addressability

ool

0xF FFFFFFF

Q00000005
00000007
Q00000005
Q00000005
00000004
Q00000003
Q00000002
0000000
Q00000000

1000 0000

0100 1001

1100 1100

1104110

0110 1110

Q000 000

110101

0101 oo

1100 1001

0100 1111

Main Memory

Byte addressability

@ Most practical assignment is to have successive
address refer to successive byte locations in the
memory (byte addressable memory)

@ Byte locations have addresses 0,1,2,

@ If the word length of the machine is 32 bits, successive
words are located at the addresses 0,4,8, With each
consisting of 4 bytes.

Big Endian and Little Endian Assighments

@ Big Endian is used when lower byte addresses are
used for the Most Significant Byte(leftmost byte)of the
word

Eg: ARM,PowerPC,MIPS

@ Little Endian is used when lower byte addresses are
used for the Least Significant Byte (rightmost bytes) of
the word

Eg: x86, VAX

=

Big Endian

8bit - OA-OB-0C-0D Tarn
16bit- GAGB - OCOD -DIt Integer

Memory OAOBOCOD

Lower

a:
atl:
at2:

at+3:

O0A

OB

0C

0D

MSB LSB
-

B

-

-<
Big-endian
Left to Right

Little Endian

32-bit integer
0A0BOCOD

Little-endian

Aligned and misaligned addresses

@ Accesses to objects larger than a byte must be aligned,
as misalignment causes hardware complications.

@ An access to object of size s bytes at byte address A is

aligned if Amod s =0

Value of 3 low-order bits of byte address

Width of object 0 1 2 3 4 5 6 7

| byte (byte) Aligned | Aligned | Aligned Aligned Aligned Aligned Aligned | Aligned
2 bytes (half word) Aligned Aligned Aligned Aligned
2 bytes (half word) Misaligned Misaligned Misaligned Misaligned
4 bytes (word) Aligned Aligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) Misaligned Misaligned

4 bytes (word) Misaligned Misaligned
8 bytes (double word) Aligned

& bytes (double word) Misaligned

8 bytes (double word) Misaligned
8 bytes (double word) Misaligned

8 bytes (double word) Misaligned

8 bytes (double word) Misaligned
8 bytes (double word)
8 bytes (double word)

Figure B.5 Aligned and misaligned addresses of byte, half-word, word, and double-word objects for byte-
addressed computers. For each misaligned example some objects require two memory accesses to complete. Every
aligned object can always complete in one memaory access, as long as the memory is as wide as the object. The figure

shows the memory organized as 8 bytes wide.The byte offsets that label the columns specify the low-order 3 bits of
the address.

Addressing Modes

@ Programs are written in high level language, which
enables the programmer to use constants, local and
global variables, pointers and arrays.

@ When translating a high level language program to

assembly language , the compiler must be able to
implement these constructs using the facilities
provided in the instruction set of the computer in
which the program will be run.

@ The different ways in which the location of an
operand is specified in an instruction are referred as
addressing modes.

@ It specify the address of an object they will access- it
specify constants and registers in addition to locations
In memory.

@ When a memory location is used, the actual memory
address specified by the addressing mode is called the
effective address.

Addressing mode

Example instruction

When used

Register

Add

R4,R3

Regs [R4] +« Regs[R4]
+ Regs[R3]

When a value is in a register.

Immediate

Add

R4,#3

Regs [R4] +« Regs[R4] + 3

For constants.

Displacement

Add

R4,100(R1)

Regs [R4] +« Regs[R4]
+ Mem[100+Regs [R1]]

Accessing local variables
(+ simulates register indirect,
direct addressing modes).

Register indirect

R4, (R1)

Regs [R4] +« Regs[R4]
+ Mem[Regs [R1]]

Accessing using a pointer or a
computed address.

Indexed

R3, (R1+R2)

Regs [R3] « Regs[R3]
+ Mem[Regs[R1]+Regs[R2]]

Sometimes useful in array
addressing: R1 = base of array;
RZ = index amount.

Direct or
absolute

R1,(1001)

Regs [R1] +« Regs[R1]
+ Mem[1001]

Sometimes useful for accessing
static data: address constant may
need to be large.

Memory indirect

R1,8(R3)

Regs [R1] « Regs[R1]
+ Mem[Mem[Regs [R3]11]

If R3 is the address of a pointer p,
then mode vields sp.

Autoincrement

R1,(RZ)+

Regs [R1] « Regs[R1]
+ Mem[Regs [R2]]
Regs [R2] « Regs[R2] +

Usetul for stepping through arrays
within a loop. R2 points to start of
array: each reference increments
R2 by size of an element, d.

R1,-(R2Z)

Regs [R2] +« Regs[R2] - o
Regs [R1] +« Regs[R1]
+ Mem[Regs[R2]]

Same use as autoincrement.
Autodecrement/-increment can
also act as pushfpop to implement
a stack.

R1,100(R2) [R3]

Regs [R1] +« Regs[R1]
+ Mem[100+Regs[R2]

+ Regs[R3]+d]

Used to index arrays. May be
applied to any indexed addressing
mode in some computers.

Register

ex: ADD rl, r2, r3
means: rl -+— r2 + r3
comment:used when a value 15 1n a register.

Immediate (or literal)

ex: ADD rl, r2, 1
means: rl =-— r2 + 1
comment:used when a constant 1s needed.

Direct

ex: ADD rl, r2, (100)

Means: rl -=— r2 4+ M[100]

comment: used to access static data; the address of the operand 1s include
in the instruction; space must be provided to accommodate a
whole address.

Register indirect (or register deferred)

ex: ADD rl, r2, (r3)

means: rl =— r2 + M[r3]

comment: the register (r3 in this example) contains the address of a memory
location.

Displacement

ex: ADD rl, r2, 100(r3)

Means: rl -w— r2 + M[r3 + 100]

comment: the address 15 the sum of the content of the register (the base)
and a constant from the instruction (the displacement); used to
access local vanables on a stack or data structures. If the
displacement 15 zero, then 1t 15 the same as register indirect.

Memory indirect (or memory deferred)

=+ ADD rl, rZ, @r3

means: rl =— r2 + M[M[r3]]
comment: used in poimnter addressing; 1if r3 contains the address ol a

pointer p, then M[M[r3]] vields *p.

Autoincrement

ex: ADD rl, r2,(r3)+
means: rl a— r2 4+ M[Er3]
r3 -4— r3 + 5

comment: used to step through arrays, the first time it 1s used r3 points to

the beginning of the array; each access increments r2 with the
size s of an array’s element (s = 1 for byte, s = 2 for half-word,
etc.)

Autodecrement

€X: ADD rl, r2, -(r3)
means: r3 =— ri - =
rl =«— r2 4+ M[r3]
comment: can be used like autoincrement, but to step through arrays in
reverse order. Together with the autoincrement mode 1t can be

used to implement a stack.

Encoding an instruction set

Encoding an instruction into binary representation
affects,

@ The size of the compiled program

@ Implementation of the processor

The operation is typically specified in one field, called
opcode

@ The important decision is how to encode the
addressing modes with operations.

@ The decision depends on the range of addressing

modes and the degree of independence between
opcodes and modes.

@ When encoding the instructions, the number of
registers and the number of addressing modes have a
significant impact on the size of the instruction.

The computer architect must balance several competing
forces when encoding the instruction set:

5 > \——-/ .
_——The computer architect must balance several competing

forces when encoding the instruction set:

1. The desire to have as many registers and addressing modes as possible.

2. The impact of the size of the register and addressing mode fields on the aver-
age instruction size and hence on the average program size.

3. A desire to have instructions encoded into lengths that will be easy to handle
in a pipelined implementation.

|

hree popular choices for encoding the
Instruction set:

@ VARIABLE
It allows virtually all addressing modes to be with all
operations.

@ FIXED
[t combines the operation and addressing mode into the
opcode.

@ HYBRID
[t has multiple formats specified by the opcode.

Operation and
no. of operands

Address
specifier 1

Address
field 1

(a) Variable (e.g., Intel 80x86, VAX)

Address
specifier n

Operation

Address
field 1

Address
field 2

Address
field 3

(b) Fixed (e.g., Alpha, ARM, MIPS, PowerPC, SPARC, SuperH)

Operation

Address
specifier

Address
field

Operation

Address
specifier 1

Address
specifier 2

Address
field

Operation

Address
specifier

Address
field 1

Address
field 2

(c) Hybrid (e.g.. IBM 360/370, MIPS16, Thumb, TI TMS320C54x)

Variable format

@ More complex, harder to decode
@ More compact, efficient use of memory

@ Variable format is best when there are many
addressing modes to be with all operations.

@It generally enables the smallest code representation,
as no need to include unused fields.

Fixed format

@ Simple, easily decoded

@ The fixed format always has the same number of
operands , with addressing mode specified as part of
the opcode

@ Fixed encoding will have only single size for all
instructions.

@ It works best when there are few addressing modes
and operations.

@It generally results in he largest code size.

Variable Vs Fixed

@ The architect who interested in code size than
performance will choose variable encoding.

@ The architect who is concerned about performance

than code size will choose fixed encoding.

